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Abstract-A method is given which allows the presentation of the effective conductivity coefficient of a 
composite with a periodic structure in an analytical form as a continuous fraction expansion. Owing to 
rapid convergence, only a few levels of the fraction are needed to describe the effective conductivity 
coefficient with good accuracy. The obtained formula is valid for a wide range of parameters, excluding 
the asymptotic case when inclusions are very close to touching and the ratio of conductivities of both 
components tends to infinity. The detailed calculations have been carried out in the two-dimensional case 

for the square arrays of cylinders. 

1. INTRODUCTION 

THIS PAPER aims to predict the effective conductivity, 
A,, of a two-phase material which consists of a dis- 
persed phase in the form of a regular array of cylinders 
embedded in a homogeneous continuous phase 
referred to as a matrix. Conductivities of the dispersed 
and continuous phases are given, and are equal to 1, 
and A,, respectively. The effective conductivity of a 
composite material is determined by the two non- 
dimensional parameters : h = &/A, and cp = V,/V, 
where V, is the volume of the dispersed phase and V 
is the total volume of the both phases. Although the 
problem is considered here in the context of thermal 
conductivity, the results may be applied to other trans- 
port properties such as the electric conductivity, 
dielectric constant, and magnetic permeability, since 
they all may be considered with the aid of the same 
mathematical formalism. A more detailed review of 
the effective transport properties in various fields 
of physics may be found in the survey articles of 
Batchelor [I] or Torquato [2]. 

The effective transport properties of two-phase 
media has been the subject of investigation for more 
than 100 years. The first-order approximation in the 
volume fraction, cp. for the effective conductivity 
coefficient was obtained by Maxwell [3], who con- 
sidered each particle of the composite as an isolated 
dipole. The second-order approximation was due to 
Rayleigh [4], who took into account particle moments 
up to the octupole and calculated the effective trans- 
port coefficient from a truncated system of linear 
algebraic equations. The Rayleigh method was then 
developed for higher order approximations by other 
authors, mainly for composites with cubic arrays of 
spherical inclusions. In the 1970s composite materials 
with regularly spaced cylindrical inclusions again be- 

came the subject of interest owing to their new appli- 
cations, such as absorbers of solar energy [5]. Based 
on the Rayleigh method, McPhedran, McKenzie, 
and others from the University of Sydney [6] have 
evaluated the effective transport coefficient by means 
of numerical computations, and presented the results 
in a tabulated form for discrete values of parameters 
cp and h. In ref. [6] a new analytic formula for the 
effective transport coefficient has also been given. 
Asymptotic behaviour for h -+ co and cp -+ qrnax (cp,,, 
being the volume fraction corresponding to the touch- 
ing cylinders) was considered in ref. [7], and an ana- 
lytic expression for the effective transport coefficient 
has been derived. However, the formulae from refs. 
[6] and [7] are of a rather low order approximation, 
and there still exists some gap where no accurate 
results are given. A semi-analytic method was applied 
by McPhedran and Milton [8] ; they represented the 
effective coefficient in the form of power expansion in 
CL : the parameter related to h and defined in Section 2 
by equation (26). To get a better convergence 
McPhedran and Milton approximated the power ser- 
ies by means of rational functions. The coefficients of 
these functions have been calculated for some discrete 
values of cp. 

An alternative approach to that of Rayleigh has 
been proposed by Zuzovsky and Brenner [9] and then 
developed by Sangani and Acrivos [lo]. This 
approach, which is sometimes called the induced 
sources method, takes advantage of the periodicity 
of the potential field, and with the use of the Wigner 
potential [l l] avoids some convergence problems that 
occur in the Rayleigh approach. In refs. [%ll] this 
method was applied to systems with cubic arrays of 
spheres. A two-dimensional case was considered by 
Cichocki and Felderhof [12]. A survey of various cal- 
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NOMENCLATURE 

a dimensionless radius of Greek symbols 
cylinders c( dimensionless heat conductivity, 

“L Wigner coefficients, S,/m (A - AJ/@, + 2,) 
b radius of cylinders B auxiliary dimensionless parameter 

.f volume fraction related to the maximal characterising the effective 

value, (P/V,,, conductivity, accp( I+ p)/( 1 - p) 
60 macroscopic gradient of temperature 1. heat conductivity [W m- ’ Km ‘1 

[Km-‘] /* dimensionless effective conductivity of 
h ratio of heat conductivities of the both the composite, I+,/& 

components, &/A, P density of the heat sources distribution 
i.j unit vectors in the Cartesian il angle in the cylindrical coordinate 

coordinate system system 
I dimension of the unit cell cp volume fraction of the discrete 
n unit normal vector component. 

9 heat flux [w m-‘1 
r dimensionless radius in the cylindrical Subscripts 

coordinate system c, d continuous and discrete component, 
R radius in the cylindrical coordinate respectively 

system cf effective value for the composite 

R, positions of the centres of grid max maximal value 
cells M, P macroscopic and periodic components 

S, Rayleigh sums of the temperature field. 
T temperature [K] 
V volume [m’] Superscripts 
“>L’ dimensionless Cartesian coordinates c, d continuous and discrete components 
X, Y Cartesian coordinates. (of the temperature field). 

culation methods of the effective transport coefficient 
for a regular array of cylinders is given in ref. [ 131. 

Bergman [ 141 investigated analytical properties of 
the effective transport coefficient of a macroscopically 
uniform composite of any given geometrical structure 
as a function of h in the complex plane. Bergman has 
shown that the effective coefficient is represented by a 
function which is analytic everywhere except in some 
points on the negative part of the real axis, where it 
has poles of the first order. Such functions, Stieltjes 
functions, are well known in the literature. One of the 
advantages of these functions is that they are well 
approximated by means of continued fractions [ 151. 

On the basis of these functions we present a method 
to derive the effective coefficient as a function of two 
arguments c( and cp. The function has the form of a 
continued fraction. It rapidly converges in a wide 
range of both arguments : thus only a few levels of the 
fraction are needed to describe the function with good 
accuracy. The analytic expression so obtained is more 
accurate than the previous formulae, and together 
with the asymptotic formula [7] covers the whole 
range of h and cp. 

2. THE GOVERNING EQUATIONS AND THE 
BOUNDARY CONDITIONS 

Consider here a composite consisting of a square 
array of identical parallel cylinders embedded in a 

homogeneous medium. The cylinders of radius b are 
infinitely long and the system may be treated as two- 
dimensional (Fig. 1). With respect to the periodic 
structure of the composite we may limit ourselves to 
a unit cell, which repeats throughout the system. The 
distance between the cylinder axes is 1. The problem 
will be considered in the cylindrical (R, 0) coordinate 
system, taking as its origin the centre of a chosen unit 
cell. We shall also use the Cartesian coordinate system 
(X, Y). Positions of the centres of grid cells are given 
by the vector 

R, = I*(n,i+n,j), n,,n, =O,f1,+2 ,..., (1) 

where i and j are the basic unit vectors in X and Y 
directions, respectively. 

FIG. 1. Elementary cell of a square grid of cylinders 
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Throughout this paper the nondimensional coor- 
dinates relating to the dimension 1 of a unit cell will 
be used : 

r = R/I, .Y = X/l, ,v = Y/l. (2) 

A steady-state heat conduction can be described by 
the following equations : 

v * q, = PI (3) 

q, = -a;vT’. (4) 

The first of these equations is a conservation equation 
for a heat flux q,, where p, is a given distribution of 
heat sources. The second equation is a constitutive 
relation between the flux q, and the gradient of tem- 
perature T’. The parameter li is a scalar type con- 
ductivity coefficient. Equations (3) and (4) are appli- 
cable to the both phases, and the index i is defined as 

i= 
c, for the continuous phase 

d, for the dispersed phase. 
(5) 

The index i appears as a subscript at all quantities 
except temperature T, where it is used in the form of 
a superscript. The boundary conditions at the cylinder 
surface r = a (where a = 6/1) are as follows : 

T’ = Td (6) 

These equations result from the assumed continuity 
of the temperature T and the heat flux q at r = a. 
Besides the boundary conditions (6) and (7) at the 
cylinder surface, one further condition at the external 
border of the cell is required. This condition results 
from the periodicity of the solution, and is equivalent 
to the known Rayleigh identity [4]. We shall return to 
this condition later. 

The volume fraction of the dispersed phase cp is 
related to the cylinder radius by 

The limiting volume fraction corresponding to the 
touching cylinders (b = 1/2) is 

q nlax = n/4 (9) 

for the square array. It is often convenient to introduce 
the ratio 

f’= cp = 4$ (10) 
(PInax 

instead of cp. Throughout this paper we shall use both 
cp (9) andf(l0) alternatively. 

The array has a form of a simply connected region 
R. If the length 1 is sufficiently small compared to the 
macroscopic length scale L of the region R, then the 
composite may be treated as homogeneous from the 
macroscopic point of view. Its bulk properties may be 

expressed by the effective conductivity coefficient, d,r, 
defined by the relation 

<n> = - &*<VT). (11) 

Here (9) and (VT) denote the volume-averaged heat 
flux and the volume-averaged temperature gradient, 
respectively. We shall return to the problem of cal- 
culating i,, in Section 3. 

In the case when I << L the potential T’ inside the 
region Q may be well approximated by the sum 

T’= TM+Tp, (12) 

where TM is a macroscopic and TF is a periodic micro- 
scopic component. The component T,,, depends on 
the shape of R whereas TF is independent of the shape 
of Q and depends on the geometrical structure and 
physical properties of the array. In the ther- 
modynamic limit when R -+ CC or I + 0 the relation 
(12) holds exactly [11, 121. 

In this paper we consider the case where a uniform 
macroscopic temperature gradient, G,, is imposed 
upon the composite material in the x-direction. A 
uniform temperature gradient corresponds to the 
elliptical shape of the region R. However, for other 
shapes considering a locally uniform temperature 
gradient is a good approximation, provided 1 CC L. We 
may then present the relation (12) in the form 

T’= G,x+TI,, (13) 

where Go is the x-component of the gradient vector 
Go, the y-component being equal to zero. 

The periodic component Ti, can be calculated with 
the aid of the method which is sometimes called the 
induced sources method, and was previously applied 
to composites with spherical inclusions arranged in 
cubic arrays [9, lo]. In this method we first search for 
a periodic solution Ti in a continuous phase. With 
this aim we consider the composite as consisting of a 
matrix material in which the inclusions are replaced 
by singular multipole source distributions located at 
their centres R,. On the basis of the above assumption 
we can insert equation (13) into (3) and (4) and obtain 
the Poisson equation for Yp 

i,v2T(p = -p<. (14) 

The distribution of singular sources pC is given in ref. 
[9] presented with the aid of generalized functions. 
Sangani and Acrivos [IO] presented the solution of 
(14) in the form 

T(P = QT,, (15) 

where 9 is a differential operator and T0 corresponds 
to a Wigner potential [ 111. Sangani and Acrivos found 
the solution for the regular three-dimensional com- 
posite with the spherical inclusions. 

In the two-dimensional case the form of 3 given in 
[lo] is as follows : 

(16) 



where Pk are unknown coefficients. Sangani and 
Acrivos [IO] confined themselves to the presentation 
of (16) without making further calculations. These 
calculations are carried out here using the two- 
dimensional Wigner potential, given in ref. [12] 

To = - lnr+$~r*+ f A,r”cosm0. (17) 
m= I 

The potential (17) is periodic by definition, hence the 
coefficients A, must be chosen such that the condition 

n-VT, = 0 (18) 

should be fulfilled at the cell boundary. The 
coefficients A, may be expressed as sums over an 
infinite array and evaluated by the Evald method [l 1, 
121. With respect to the symmetry of the square array 
these coefficients are different from zero only for m 
which are multiples of 4. Numerical values of the 
coefficients A,,, are given in ref. [12] for several values 
of m. 

The coefficients A,,, are related to the coefficients S, 
used by Rayleigh [4] with the aid of the following 
equality [ 131: 

A, 2. 
m (19) 

Numerical values of S,,, for the square array are given 
in ref. [6]. 

Based on equations (15))(17) we can present the 
periodic component Tj of the temperature in the con- 
tinuous phase in the form of the following expansion: 

where Ti denotes functions obtained by subsequent 
derivation of T, (15) : 

cos k6, 
T; = (-l)k(k-l)!p rk +7d&n rcost?+&) 

+c------ 
x (m+k)!A 

n,=1 m! 
k,,~rmcosm@. (21) 

The periodic component T$ of temperature in the 
dispersed phase can be presented as 

(22) 

where the functions Ti, nonsingular at r = 0. have the 
form 

ri = (- l)k(k- l)!.CcoskH+rr(ii,;rCoso+ii,,) a2k 

+c- z (m+k)!A 
m! 

k+mrm cosnd, (23) 
m=l 

and Qk are unknown coefficients. The basic functions 
T;( r,@) and Tf( r,0) have been first derived and 
discussed in ref. [ 131. The periodicity condition is ful- 
filled identically here owing to the periodic properties 

of the Wigner potential (18) involved in the derivation 
of the basic functions (21), (23). The lack of singu- 
larity of the solution at r = 0 follows from equation 
(23). From the condition (6) we get immediately 

Pk = Qk. (24) 

With respect to the symmetry conditions for the 
square array these coefficients are equal to 0 for even 
k. 

The unknown coefficients, Pk, have to be deter- 
mined from the boundary condition (7). Inserting 
equation (13) to (7) and taking x = r cos 0 we get 

(25) 

where 

l-h 

a=iTi. (26) 

Now let us substitute equations (20) and (22) with 
(21) and (23) in (25) and collect terms with respect to 
cos k0. After differentiation and some rearrangements 
one then obtains the following system of equations 

where D is a column vector whose first element is 1 
and all the others are equal to 0, iis the unit matrix 
and 2 is a symmetric matrix. 

The unknown vector X has its elements related to 

Pk by (28) 

X Zn+ I = fjy(2+2)!P -~ 2rr 1 (28) 
0 

and the elements of the matrix 2 have the following 
form : 

w,w, = - (2m+2n-2)!A~,,+2,,_~ 

4”‘+“-’ (2m-2)! (2n-2)! J2m- lJ2n-1 

xf’“‘+“_ ’ 1 m,n= 1.2 ,..., (30) 

where qn and ,f are related by (10). The system of 
equations (27) together with (29) and (30) involves 
two parameters : z (26) and the volume fraction of the 
dispersed phase cp (or ,j’). With the aid of the relations 
(28), (13), (20) and (22) the solution of (27) allows 
one to calculate temperature distribution in the con- 
tinuous as well as in the dispersed phase. 

3. THE EFFECTIVE TRANSPORT COEFFICIENT 

Now we rederive the Rayleigh formula [4] for the 
effective transport coefficient (11) in the case of the 
square array of cylinders. With this aim we evaluate 
the volume-averaged quantities which may be ex- 
pressed as 
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(F) = (l-cpKFc)+dFd), (31) 4. METHOD OF SOLUTION 

where F is any given function of the position, and the As follows from (38), the effective transport 
average quantities (F,) are defined as coefficient depends only on the first component X, of 

lf 
the solution of (27). It can be written formally as 

(F,) =+ Fidv 
J ’ “8 

in each phase, V, being the volume of the ith phase. 
With the aid of (4) we apply (31) to the heat flux and 
the temperature gradient. Thus we obtain 

(9) = - (n,(l-cP)(VT’)+i,cp(VTd)) (33) 

(VT) = G, = (1-q) (VT’)+rp(VTd). (34) 

Substituting (33) and (34) into (11) upon some 
rearrangement we get the following formula for the 
effective coefficient : 

p+=,-(,-~)~. (35) 
c 0 

The mean temperature gradient in the dispersed phase 
(VTd) can be calculated from (32) with the aid of 
(22)-(24) by integration of the temperature field in a 
unit cell : 

(41) 

where a matrix with the superscript S denotes a sub- 
matrix of the original matrix, corresponding to its first 
element. The coefficients W,,,, (30) define the matrix 
I@‘; and it is seen from equation (29) that 

Now we shall put the relation (41) into a more advan- 
tageous form. The Wigner coefficients Az(,+,_,) are 
different from 0 for odd m+n. As a consequence the 
nonzero elements W,,,, (30) of the matrix (@) depend 
on even powers of cp. However, it is seen from (29) 
that the first element of the matrix ,Z? is linear with 
respect to cp 

z,, = -cp. (43) 

(Vi’+) = _ x With the aid of the identity 
(1-h)a*’ (36) 

(44) 
Substituting. equation (36) into (35), we obtain the 
following for&la for the effective conductivity 
coefficient : which follows directly from (29), we separate the term 

linear with respect to cp, and replace in our con- 

/J= l+2n~. 
0 

(37) 

Since we intend to search for the solution of our 
problem with the aid of equation (27), we replace B, 
in (37) by X, (28) and get a new form of relation (27): 

/l= 1-2tpx,. (38) 

Now we can easily derive the effective conductivity 
coefficient in its first approximation solving equation 
(27) for m = n = 1. In this case (27) takes the form 

( > ;+q x,=1 

and (38) yields 

p&2% 
acp+l 

siderations the matrix .X! by the matrix I@, thus pre- 
serving merely terms depending on even powers of q. 
Inserting equation (44) into (41) and denoting 

I I ‘fS_ @S 
a 

Y, = 

I I' 
I,-_@ 

(45) 

GI 

we get the relation between X, and Y, 

1 
X, =------- 

cp+ l/Y, 
(46) 

Multiplying the numerator and denominator of the 
fraction (46) by CI and inserting it into the formula 
(38) we get 

(47) 

These calculations were first carried out by Maxwell Substituting for the ratio cp/ Yr a new parameter b 
[3] but the corresponding formula (40) has the form 
derived later by Garnett. The relation (40), known B = a/Y, (48) 

in the literature as the MaxwellGarnett formula, is we obtain the following general formula for the effec- 
equivalent to the earlier Clausius-Mosotti formula for tive transport coefficient : 
the dielectric constant. It does not depend on the 
detailed geometric structure of the composite: p= 1-2orcp. (49) 
however, it is valid in a rather limited range of par- acp+B 

ameters a, cp. This formula closely resembles the Maxwell-Garnett 
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formula (40) except that here we have b instead of 1. 
It will be seen from the following that fi is a more 
convenient form for representing the effective trans- 
port coefficient than p. The parameter fi is related to 
Y, and may be obtained by solving the system (50), 
whose coefficients depend on even powers off: 

(50) 

The solution of (50) may be represented in the form 

(51) 

Making use of the identity 

(f--@)) = f an@ 
,I = 0 

(52) 

and remembering that Y, = u/b, and the only nonzero 
component of D is D, (0, = 1) we obtain from (51) 

;= g c?“(IP),,,. (53) 
n-O 

The matrix I@ (30) has the chess-board type struc- 
ture : the matrix elements with the even sum of indices 
are equal to 0. This structure of zero elements remains 
unchanged for the odd powers of the matrix ; in par- 
ticular 

(P-‘)1,1 =O, fork= 1,2 ,.... (54) 

It follows from equations (53) and (54) that Bdepends 
on x2. This result is equivalent to the Keller symmetry 

VW. 
The elements of the matrix @with the odd sum of 

indices are proportional to the even positive powers 
off, the lowest exponent off being 2. The nonzero 
elements of the matrix I@* are the products of rows 
and columns of the matrix I@, and therefore have the 
form of power series off 4, with the lowest exponent 
off being 4. As a consequence of the fact that all 
nonzero elements of I@ are the positive powers off *, 
the lowest exponent off in the elements of powers of 
the matrix @increases with the matrix exponent, and 
equals 4k for @2k. Thus we obtain 

= k$, (&2k ( ,gk ck,.f4J)) ’ (55) 

The coefficients L’~, may be calculated numerically 
from equations (53) and (27). 

5. REPRESENTATION OF /I BY A CONTINUED 

FRACTION 

The power series is not a reasonable form for rep- 
resenting b. As was stated in the Introduction, the 
effective conductivity coefficient as a function of the 
complex argument h (for the given geometrical struc- 
ture) is a Stieltjes function : this means that it has poles 
of the first order on the real negative semi-axis. The 

location of the poles restricts the convergence radius 
of the power series. Taking as the argument tl, instead 
of h, we obtain as a physically meaningful range 
]tl] < 1, while the negative values of h correspond to 
ltl] > 1. In this case the physically meaningful range 
lies inside the convergence circle. But even in this case, 
the poles lying near /cl1 = 1 make the power series 
converge very slowly. The continued fraction, whose 
subsequent approximants are rational functions, is 
much better adapted to represent such functions. It 
should be taken into account that the poles of the 
functions P(E) or ~(cc’) lie, in any case partially, on 
the positive semi-axis. In this case the corresponding 
series are not the Stieltjes series, but their generalized 
form-the Hamburger series. However, even in this 
case using the continued fraction is very fruitful. 

The power series (55) may be represented as a J- 
fraction [15] of the argument l/x2, the coefficients of 
the fraction being power series off”. This trans- 
formation may be done numerically with the aid of the 
algorithm presented in ref. [ 151. Similarly to equation. 
(55), the lowest power off in the power series rep- 
resenting the coefficients of subsequent levels of the 
continued fraction increase with the order of the level, 
but this growth is even larger than in equation (55). In 
the following, we present argumentation which makes 
possible to determine the lowest powers off for the 
coefficients of the J-fraction for P(l/a’). Since the full 
calculations are rather complicated, we shall give only 
their brief outline. First let us write two expressions 
for l/fl; the first one follows directly from (45) and 
(48) : 

I I Ifs._ p.7 

1 1 I@ I _=_ 
B 51’ 

I I’ 
‘f-@ 

(56) 

a 

while the second is the expansion of the power series 
(55) into an S-fraction [15] : 

1 1 k, k, k, k, 

B 1 I/ &Z _ 1 _ 1,a2 _ 1 _ “. (57) 

The nth approximant of the continued fraction (57) 
may be presented as a rational function of l/a’. In 
a similar way we may express l/b from (56), upon 
truncating the matrices i and I@ to n rows and n 
columns. We obtain 

where m = entier (n/2) and i = 1,2 for the rational 
functions obtained from (57) and (56) respectively. 
Transforming the continued fraction (57) to a rational 
function involves only four fundamental arithmetical 
operations, so the coefficients p? and qj” of the 
rational function are certain polynomials of k,, k2,. . , 
k,. These polynomials have a particularly simple form 
for pi” and qt) : 
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PO (‘I= -kZ*k4...k2,,,, forn = 2mfl 

qh’) = -k, .k3...k2,,_,, for n = 2m. (59) 

It follows from (56) and (58) that pb*’ and qf’ are 
equal to 1 fi’“j and 1 @I, respectively. Each term of the 
determinant of the order k is a product of k matrix 
elements. The sum of all 2k indices in each product is 
the same and equals k(k+ 1). The nonzero elements of 
the matrix I@ are powers off (30) with the exponents 
determined by the sum of indices of the element. 
Consequently, each term of the determinant is pro- 
portional tofwith the same exponent, and the nonzero 
determinants of @are powers off It results from (30) 
that upon truncation of the matrix I@ to n columns 
and n rows, 1 @I is equal to 0 for odd n and is pro- 
portional tof”’ for even II ; on the other side 1 PSI is 
equal to 0 for even n and is proportional to f”-’ for 
odd n. We then obtain 

p=1- Kl K2 

L,+(l/a*)- L?+(l/a*)-“” 
(65) 

where 

K, = k,, L, =‘- k,, 

K, = kz,pz*k+,> L, = - (k,,p , + k,); 

j=2,3 ).... (66) 

Making use of (66) we may present the coefficients of 
the continuous fraction (65) in the form of power 
series off” : 

Kv = fW--3) , s, K, f‘+’ 

L, =f”““-- I +6,J n = 1,2,.... (67) 

pa’= ]I@‘“] =const.,f4”(“+‘), forn=2m+l 6. NUMERICAL RESULTS 

qb2) = 1 PI = const *yfqm2, forn = 2m. (60) 

The coefficients ck in (55) are power series off4. The 
same is valid for the coefficients k,, because the cor- 
responding transformation from ci to k, only involves 
arithmetical operations 

In the previous section we gave the expression for 
[I in the form of a J-fraction with the argument l/a2, 
the coefficients of which have the form of power series 
with the argument f”. If S is not too close to 1, then 
the coefficients K, rapidly decrease and only very few 
levels of the fraction (65) have an influence on the 
value of the fraction (see Fig. 2). 

ki=~kij’+‘, i= l,..., n. (61) 
/ 

Now let us see what is the lowest power off’in (61). 
We denote by kp the term with the lowest power off 
within k,. In general, the values of k, depend on the 
size of the matrix (n x n). However, it appears that the 
values of kp do not depend on n. Comparing qb” with 
qa’ or phi’ with pa’ we obtain two forms of equations 
for the coefficients k, for n even and odd, respectively 

k,.k,~.~k2,~=const.f4”‘“‘+“, forn=2m 

However, if f becomes near to 1, the formula (67) 
becomes less convenient : the coefficients K, and L, 
of the power series in (67) decrease slowly with j for 
n > 1 (for lowj they may even increase). The number 
of these coefficients needed for evaluation of K,, L, 
for a givenf near to 1 may be much greater than the 
number of necessary levels of the continued fraction. 
In this case a more tractable expression for fi may be 
obtained by replacing the power series (67) by their 
Pade approximants [19]. Taking into account 4M as 
the highest power offwe have 

k, * k, kz,,_ , = const .,f”“‘! , for n = 2m + 1. (62) 

In accordance with equations (62), the products of 
the power series k, are power functions with integer 
exponent. Since in the multiplication of power series 
the product of terms with the lowest exponents cannot 
be cancelled, we have 

M . 

kl * kt ki,, = const ,,f4”““’ + ‘) , for II = 2r12 

k” ,,,$I . . . I 3 ki,,_, = const .,f4”‘2 , forrz = 2m+ 1. 
(63) 

,= / 

We have obtained the recurrent system of equations 
(63) for any given n. Solving this system we simply 
find that the lowest power offwithin k, is 4 : 

kp = const .J”’ , i = 1,2, (64) 

The S-fraction (57) can be transformed to a J-frac- 
tion ([15], chapter 4.5) 

An algorithm calculating the coelhcients s,,,, S,,, t,,, T,,, 
has been obtained. The algorithm enables calculations 
for arbitrary number of fraction levels and arbitrary 
M within the limits of computer memory. In Table 1 
we have limited ourselves to the coefficients for n = I, 
2 and j = 1,. . , 4, because further increasing of the 
coefficients’ number furnish only a little progress in 
accuracy near the singular point. For n = 1 the power 
series representation (67) is used, thus the coefficients 
S,, and T,, being equal to zero. 
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Table 1. Coefficients of the continuous fraction for /I 

1 1 0.11637 
2 0.00193 
3 0.00000 
4 0.00000 

2 1 0.02046 
2 -0.01181 
3 0.00223 
4 -0.00030 

0.00000 -0.20313 0.00000 
0.00000 -0.05203 0.00000 
0.00000 -0.01178 0.00000 
0.00000 -0.00317 0.00000 

-1.33165 -0.10072 - 1.56126 
0.60125 0.03172 0.95059 

-0.07218 0.01770 -0.28559 
- 0.02059 -0.01764 0.03875 

The formulae (68) together with Table 1 accurately 
determine the effective conductivity coefficient in all 
the range of a and f; except the neighbourhood of the 
singular point at &’ = 1 andf = 1, where the asymp- 
totic formula, known from the literature [7] should be 
applied. The accuracy of (68) as compared with the 
formulae of other authors is presented in Fig. 2. In 
the figure the lines bounding the regions in which 
accuracy of particular formulae are better than 1% 
are drawn. The region of applicability of a particular 
formula lies underneath the drawn line. It is seen that 
the formula (49) together with (65) and (68) has the 
largest region of applicability. 

Another representation of the effective transport 
coefficient is the representation by poles. Because the 
function p(h) is a Stieltjes functions, its poles lay on 
the negative real semi-axis in the complex h-plane. It 
is convenient to consider the poles of /3(a’) instead of 
p(h) because each pole of b(a’) corresponds to two 
poles of p(h) for h = (l+a)/(l-cr) and h = (l--x)/ 
(1 + a), respectively : 

p=,-cgEL 
k a2 -arg, 

(69) 

In this case the main pole corresponding to the 
MaxwellLGarnett formula is absent. The poles of 
/l(a’) are located in the infinite interval (1, cu) of a’. 

The locations and values of residua of three first poles 
of fi(a’) are shown in Fig. 3, where arg means l/a* and 
res represents the value of the residuum. However, it 

0.8 

0.5. 
100 IO' 102 103 

h 

FIG. 2. Upper bound of regions of applicability (error < 1%) 
of the formulae for the effective conductivity coefficient : (I) 
Maxwell-Garnett, (2) Rayleigh, (3) McPhedran et al., (4) 

present results. 

should be noted that the representation by means 
of continued fraction is more advantageous than the 
representation by poles. It follows from the fact that 
the knowledge of the several first coefficients of the 
continued fraction enables the evaluation of the first 
moments of the spectral density function. This is not 
possible in the case of the representation by poles. 

7. CONCLUSIONS 

In this paper a recursion method has been derived 
to obtain the effective conductivity coefficient of a 
composite as a continued fraction representation for 
u, with fraction coefficients being functions off. This 
method was applied to a square array of cylinders 
embedded in a homogeneous matrix: however, the 
method has a more general character and may be 
applied to other regular arrays of cylinders or spheres. 
The obtained formula in a form of a continued frac- 
tion provides rapid convergence, and it appears that 
two levels of the fraction are sufficient to get a good 
accuracy in a wide range of parameters. Together with 
the asymptotic formula [7] it covers the full range of 
parameters. Analysis of the quantity /?, which appears 
in the expression (49) for p(, is more convenient than 
the direct analysis of p(a,f’), because /? reveals a 
higher degree of symmetry as a function of par- 
ameters : /I = /?(a’, f”). 

ARG 

FIG. 3. The arguments and residua of the first three poles of 
the function /I(a’). 
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